From the book
Fruits of Warm Climates
by Julia F. Morton
Sugar Apple
Annona
squamosa
ANNONACEAE
The most widely grown of all the species of Annona, the sugar
apple, A. squamosa
L., has acquired various regional names: anon (Bolivia, Costa Rica,
Cuba, Panama); anon de azucar, anon domestico, hanon, mocuyo
(Colombia); anona blanca (Honduras, Guatemala, Dominican Republic);
anona de castilla (El Salvador); anona de Guatemala (Nicaragua);
applebush (Grenadines); ata, fruta do conde, fruta de condessa,
frutiera deconde, pinha, araticutitaia, or ati (Brazil); ates or atis
(Philippines); atte (Gabon); chirimoya (Guatemala, Ecuador); cachiman
(Argentina); cachiman cannelle (Haiti); kaneelappel (Surinam); pomme
cannelle (Guadeloupe, French Guiana, French West Africa); rinon
(Venezuela); saramulla, saramuya, ahate (Mexico); scopappel
(Netherlands Antilles); sweetsop (Jamaica, Bahamas); ata, luna, meba,
sharifa, sarifa, sitaphal, sita pandu, custard apple, scaly custard
apple (India); bnah nona, nona, seri kaya (Malaya) manonah, noinah,
pomme cannelle du Cap (Thailand); qu a na (Vietnam); mang cau ta
(Cambodia); mak khbieb (Laos); fan-li-chi (China).
Plate 8: SUGAR APPLE, Annona
squamosa
Description
The
sugar apple tree ranges from 10 to 20 ft (3-6 m) in height with open
crown of irregular branches, and some-what zigzag twigs. Deciduous
leaves, alternately arranged on short, hairy petioles, are lanceolate
or oblong, blunt tipped, 2 to 6 in (5-15 cm) long and 3/4 to 2 in (2-5
cm) wide; dull-green on the upperside, pale, with a bloom, below;
slightly hairy when young; aromatic when crushed. Along the branch
tips, opposite the leaves, the fragrant flowers are borne singly or in
groups of 2 to 4. They are oblong, 1 to 1 1/2 in (2.5-3.8 cm) long,
never fully open; with 1 in (2.5 cm) long, drooping stalks, and 3
fleshy outer petals, yellow-green on the outside and pale-yellow inside
with a purple or dark-red spot at the base. The 3 inner petals are
merely tiny scales. The compound fruit is nearly round, ovoid, or
conical; 2 1/3 to 4 in (6-10 cm) long; its thick rind composed of
knobby segments, pale-green, gray-green, bluish-green, or, in one form,
dull, deep-pink externally (nearly always with a bloom); separating
when the fruit is ripe and revealing the mass of conically segmented,
creamy-white, glistening, delightfully fragrant, juicy, sweet,
delicious flesh. Many of the segments enclose a single
oblong-cylindric, black or dark-brown seed about 1/2 in (1.25 cm) long.
There may be a total of 20 to 38, or perhaps more, seeds in the average
fruit. Some trees, however, bear seedless fruits.
Origin and Distribution
The
original home of the sugar apple is unknown. It is commonly cultivated
in tropical South America, not often in Central America, very
frequently in southern Mexico, the West Indies, Bahamas and Bermuda,
and occasionally in southern Florida. In Jamaica, Puerto Rico,
Barbados, and in dry regions of North Queensland, Australia, it has
escaped from cultivation and is found wild in pastures, forests and
along roadsides.
The Spaniards probably carried seeds from the
New World to the Philippines and the Portuguese are assumed to have
introduced the sugar apple to southern India before 1590. It was
growing in Indonesia early in the 17 th century and has been widely
adopted in southern China, Queensland, Australia, Polynesia, Hawaii,
tropical Africa, Egypt and the lowlands of Palestine. Cultivation is
most extensive in India where the tree is also very common as an escape
and the fruit exceedingly popular and abundant in markets. The sugar
apple is one of the most important fruits in the interior of Brazil and
is conspicuous in the markets of Bahia.
Varieties
The
'Seedless Cuban' sugar apple was introduced into Florida in 1955, has
produced scant crops of slightly malformed fruits with mere vestiges of
undeveloped seeds. The flavor is less appealing than that of normal
fruits but it is vegetatively propagated and distributed as a novelty.
Another seedless type was introduced from Brazil.
Indian
horticulturists have studied the diverse wild and cultivated sugar
apples of that country and recognize ten different types: 'Red' (A.
squamosa var. Sangareddyiz)—red-tinted foliage and flowers,
deep-pink rind, mostly non-reducing sugars, insipid, with small,
blackish-pink seeds; poor quality; comes true from seed.
'Red-speckled'—having red spots on green rind.
'Crimson'—conspicuous red-toned foliage and flowers,
deep-pink
rind, pink flesh. 'Yellow'; 'White-stemmed'; 'Mammoth' (A. squamosa
var. mammoth)—pale yellow petals, smooth, broad, thick, round
rind segments that are light russet green; fruits lopsided, pulp soft,
white, very sweet; comes true from seed.
'Balangar'—large,
with green rind having rough, warty [tuberculate], fairly thick rind
segments with creamy margins; sweet; high yielding.
'Kakarlapahad'—very high yielding.
'Washington'—acute
tuberculate rind segments, orange-yellow margins; high yielding; late
in season, 20 days after others. 'Barbados' and 'British
Guiana'—having green rind, orange-yellow margins;
high-yielding;
late
Climate
The
sugar apple tree requires a tropical or near-tropical climate. It does
not succeed in California because of the cool winters though in Israel
it has survived several degrees below freezing. Generally, it does best
in dry areas and it has high drought tolerance. However, in Ceylon it
flourishes in the wet as well as the dry zones from sea level to 3,500
ft (1,066 m) elevation. During the blooming season, drought interferes
with pollination and it is, therefore, concluded that the sugar apple
should have high atmospheric humidity but no rain when flowering. In
severe droughts, the tree sheds its leaves and the fruit rind hardens
and will split with the advent of rain.
Soil
The
sugar apple is not particular as to soil and has performed well on
sand, oolitic limestone and heavy loam with good drainage.
Water-logging is intolerable. The tree is shallow-rooted and doesn't
need deep soil. Irrigation water containing over 300 ppm chlorine has
done the tree no harm.
Propagation
Sugar
apple seeds have a relatively long life, having kept well for 3 to 4
years. They germinate better a week after removal from the fruit than
when perfectly fresh. Germination may take 30 days or more but can be
hastened by soaking for 3 days or by scarifying. The percentage of
germination is said to be better in unsoaked seeds. While the tree is
generally grown from seed, vegetative propagation is practiced where
the crop is important and early fruiting is a distinct advantage.
Seedlings may be budded or grafted when one-year old. In India,
selected clones grafted on A.
reticulata
seedlings have flowered within 4 months and fruited in 8 months after
planting out, compared with 2 to 4 years in seedlings. The grafted
trees are vigorous, the fruits less seedy and more uniform in size. A. senegalensis is
employed as a rootstock in Egypt. A.
glabra is suitable but less hardy. The sugar apple itself
ranks next after A.
reticulata
as a rootstock. In India, budding is best done in January, March and
June. Results are poor if done in July, August, November or December
unless the scions are defoliated and debudded in advance and cut only
after the petioles have dehisced. Side-grafting can be done only from
December to May, requires much skill and the rate of success has not
exceeded 58.33%. Shield-budding gives 75% success and is the only
commercially feasible method.
Inarching is 100% successful.
Cuttings, layers, airlayers have a low rate of success, and trees grown
by these techniques have shallow root systems and cannot endure drought
as well as seedlings do.
Culture
In
Egypt, sugar apple trees are spaced at 10 x 10 ft (3x3 m) in order to
elevate atmospheric humidity and improve pollination. Palestinian
growers were spacing at 16 x 16 ft (5x5 m) but changed to 16 x 10 ft
(5x3 m) as more feasible. On light soils, they apply 132 to 176 lbs
(60-80 kg) manure per tree annually and they recommend the addition of
nitrogen. Commercial fertilizer containing 3% N, 10 % P and 10% K
significantly increases flowering, fruit set and yield. Judicious
pruning to improve shape and strength of tree must be done only in
spring when the sap is rising, otherwise pruning may kill the tree.
Irrigation during the dry season and once during ripening will increase
fruit size.
Cropping and Yield
Seedlings
5 years old may yield 50 fruits per tree in late summer and fall. Older
trees rarely exceed 100 fruits per tree unless hand-pollinated. With
age, the fruits become smaller and it is considered best to replace the
trees after 10 to 20 years. The fruits will not ripen but just turn
black and dry if picked before the white, yellowish or red tint appears
between the rind segments, the first signs of separation. If allowed to
ripen on the tree, the fruit falls apart.
Keeping Quality
In
India, mature fruits treated with 50-60 g carbide ripened in 2 days and
thereafter remained in good condition only 2 days at room temperature,
while those packed in straw ripened in 5-6 days and kept well for 4
days.
Storage trials in Malaya indicate that the ripening of
sugar apples can be delayed by storage at temperatures between
59°
and 68°F (15°-20°C) and 85-90% relative
humidity, with low
O2 and C2 H2. To speed ripening at the same temperature and relative
humidity, levels of O2 and CO2 should be high. Storing at
39.2°F
(4°C) for 5 days resulted in chilling injury.
In Egypt, of
'Beni Mazar' fruits, picked when fullgrown, 115 days from set, and held
at room temperature, 86°,to ripened in 10 days. Of 'Abd E1
Razik'
fruits, 140 days from set, 56% were ripe in 15 days. Therefore, 'Abd E1
Razik' is better adapted to Upper Egypt where the climate should
promote normal ripening.
Pests and Diseases
In Florida and the Caribbean, a seed borer (chalcid fly), Bephratelloides cubensis,
infests the seeds and an associated fungus mummifies the partly grown
fruits on the tree. This has discouraged many from growing the sugar
apple, though in the past it was a fairly common dooryard fruit tree.
Similar damage is caused by B.
maculicollis in Colombia, Venezuela and Surinam, by B. ruficollis in
Panama, and B.
paraguayensis in Paraguay. The soft scale, Philephedra
sp., attacks leaves and twigs and deposits honeydew on which sooty mold
develops. Ambrosia beetles lay eggs on young stems and the larvae
induce dieback during the winter.
The mealybug is the main pest
in Queensland, Australia, but is easily controlled. The green tree ant
is a nuisance because of the nests it makes in the tree. Bird and
animal predators force Indian growers to cover the tree with netting or
pick the fruits prematurely and ripen them in straw.
A serious leaf blight in India is caused by the fungus Colletotrichum annonicola.
In 1978 a new fruit rot of sugar apple was observed in India, beginning
with discoloration at one end which turns brown or black in 4 or 5
days, and 2 or 3 days later the entire fruit starts to rot. Later, the
fruit is covered with gray-black mycelium and spherical bodies. The
isolated fungus was identified as the Colletotrichum state of Glomerella cingulata.
Food Uses
The
ripe sugar apple is usually broken open and the flesh segments enjoyed
while the hard seeds are separated in the mouth and spat out. It is so
luscious that it is well worth the trouble. In Malaya, the flesh is
pressed through a sieve to eliminate the seeds and is then added to ice
cream or blended with milk to make a cool beverage. It is never cooked.
Toxicity
The
seeds are acrid and poisonous. Bark, leaves and seeds contain the
alkaloid, anonaine. Six other aporphine alkaloids have been isolated
from the leaves and stems: corydine, roemerine, norcorydine,
norisocarydine, isocorydine and glaucine. Aporphine, norlaureline and
dienone may be present also. Powdered seeds, also pounded dried fruits
serve as fish poison and insecticides in India. A paste of the seed
powder has been applied to the head to kill lice but must be kept away
from the eyes as it is highly irritant and can cause blindness. If
applied to the uterus, it induces abortion.
Heat-extracted oil
from the seeds has been employed against agricultural pests. Studies
have shown the ether extract of the seeds to have no residual toxicity
after 2 days. High concentrations are potent for 2 days and weaken
steadily, all activity being lost after 8 days. In Mexico, the leaves
are rubbed on floors and put in hen's nests to repel lice.
Other Uses
The
seed kernels contain 14-49% of whitish or yellowish, non-drying oil
with saponification index of 186.40. It has been proposed as a
substitute for peanut oil in the manufacture of soap and can be
detoxified by an alkali treatment and used for edible purposes. The
leaves yield an excellent oil rich in terpenes and sesquiterpenes,
mainly ß-caryophyllene, which finds limited use in perfumes, giving a
woody spicy accent.
Fiber extracted from the bark has been employed for cordage. The tree
serves as host for lac-excreting insects.
Medicinal
Uses: In India the crushed leaves are sniffed to overcome hysteria and
fainting spells; they are also applied on ulcers and wounds and a leaf
decoction is taken in cases of dysentery. Throughout tropical America,
a decoction of the leaves alone or with those of other plants is
imbibed either as an emmenagogue, febrifuge, tonic, cold remedy,
digestive, or to clarify the urine. The leaf decoction is also employed
in baths to alleviate rheumatic pain. The green fruit, very astringent,
is employed against diarrhea in El Salvador. In India, the crushed ripe
fruit, mixed with salt, is applied on tumors. The bark and roots are
both highly astringent. The bark decoction is given as a tonic and to
halt diarrhea. The root, because of its strong purgative action, is
administered as a drastic treatment for dysentery and other ailments.
Food
Value Per
100 g of Edible Portion* |
Calories | 88.9-95.7
g |
Moisture |
69.8-75.18
g |
Fat |
0.26-1.10
g |
Carbohydrates** |
19.16-25.19
g |
Crude
Fiber |
1.14-2.50
g |
Protein |
1.53-2.38
g |
Amino
Acids: |
|
Tryptophan |
9-10
mg |
Methionine |
7-8
mg |
Lysine |
54-69
mg |
Minerals: |
|
Ash |
0.55-1.34
mg |
Phosphorus |
23.6-55.3
mg |
Calcium |
19.4-44.7
mg |
Iron |
0.28-1.34
mg |
Vitamins: |
|
Carotene |
5-7
I.U. |
Thiamine |
0.100-0.13
mg |
Riboflavin |
0.113-0.167
mg |
Niacin |
0.654-0.931
mg |
Ascorbic
Acid |
34.7-42.2
mg |
*Minimum and maximum levels of constituents from analyses made in the
Philippines, Central America and Cuba. |
|
**The average sugar content is 14.58% and is about 50-50 glucose and
sucrose.
|
|